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During gestation the developing human fetus is exposed to a diverse 
range of potentially immune-stimulatory molecules including 
semi-allogeneic antigens from maternal cells1,2, substances from 
ingested amniotic fluid3,4, food antigens5, and microbes6. Yet the 
capacity of the fetal immune system, including antigen-presenting 
cells, to detect and respond to such stimuli remains unclear. In 
particular, dendritic cells, which are crucial for effective immunity 
and tolerance, remain poorly characterized in the developing 
fetus. Here we show that subsets of antigen-presenting cells can 
be identified in fetal tissues and are related to adult populations 
of antigen-presenting cells. Similar to adult dendritic cells, fetal 
dendritic cells migrate to lymph nodes and respond to toll-like 
receptor ligation; however, they differ markedly in their response to 
allogeneic antigens, strongly promoting regulatory T-cell induction 
and inhibiting T-cell tumour-necrosis factor-α production through 
arginase-2 activity. Our results reveal a previously unappreciated 
role of dendritic cells within the developing fetus and indicate that 
they mediate homeostatic immune-suppressive responses during 
gestation.

We used a combination of flow cytometry and gene array analysis to 
characterize human fetal antigen-presenting cells (APC) and compare 
them with adult APC. Using our previously described gating strategy 
for adult tissue APC7,8 (Extended Data Fig. 1a, b), we identified fetal 
APC subsets: CD14+ monocytes/macrophages, plasmacytoid dendritic 
cells (pDC), conventional (c)DC1, and cDC2 within fetal spleen, skin 
(in agreement with findings by others9), thymus, and lung (Fig. 1a and 
Extended Data Fig. 1a) by 13 weeks estimated gestational age (EGA). 
Within both early (12–15 weeks) and late (16–22 weeks) second- 
trimester fetal tissue, APC were relatively abundant within the CD45+ 
compartment compared with adult tissues (Fig. 1b and Extended Data 
Fig. 1c). Fetal spleen cDC1 and cDC2 were also observed in situ using 
immunofluorescence microscopy (Extended Data Fig. 1d). Next we 
compared the gene expression profiles of cDC1, cDC2, and CD14+ cells 
from fetal skin and spleen with those from adult spleen (for sort gating 
strategy, see Extended Data Fig. 1a, b; for post-sort cell purity confirma-
tion, see Extended Data Fig. 2a) as well as with published data on adult 
blood- and skin-derived APC subsets (Supplementary Experimental 

Procedures, Extended Data Fig. 3 and ref. 7). Connectivity map analysis7  
was used to compare the subset-specific gene expression signatures of 
fetal spleen and skin cDC1, cDC2, and CD14+ cells with those of adult 
blood, skin, and spleen APC (Fig. 1c). Connectivity map scores indi-
cated that the gene expression signature of fetal cDC1 was enriched with 
genes also expressed by adult cDC1; similarly, the fetal cDC2 signature  
was enriched with adult cDC2-associated genes and fetal CD14+ cells 
scored most highly with adult blood monocyte and tissue macrophage 
populations, as expected7,8. Scatter plot analysis of normalized gene 
expression confirmed the strong correlation (R =  0.92) between the 
expression profiles of fetal and adult cDC1, as well as fetal and adult 
cDC2 (Extended Data Fig. 2b). Conserved gene lists across fetal 
and adult APC subsets and ingenuity pathway analysis of these gene 
lists are provided in Supplementary Tables 1–9 (see Supplementary 
Experimental Procedures for the analysis). At the molecular level, 
fetal and adult dendritic cells expressed comparable levels of dendritic 
cell subset-specific transcription factors (Extended Data Fig. 2c), in  
agreement with published data10 . Detailed phenotyping by CyTOF and 
One-SENSE analysis (see Supplementary Experimental Procedures 
and ref. 11) demonstrated that fetal and adult spleen dendritic cells had 
similar antigen expression profiles, except for CD141, Fcε R1, and CLA, 
which were relatively more highly expressed on adult cDC2 (Extended 
Data Fig. 4a, b).

To gain insight into the functions and heterogeneity of the fetal tissue 
cDC populations, we first compared their surface antigen expression 
profiles across tissues within single donors (Fig. 2a; input gating strat-
egy and original heatmap in Extended Data Fig. 5a, b), and with cDC 
from adult tissues using CyTOF and One-SENSE analysis11 (Extended 
Data Fig. 5c). Fetal cDC1 and cDC2 showed great heterogeneity 
between tissues at the single-cell level (Fig. 2a), most obviously within 
the lung, suggesting differential tissue imprinting. We also identified 
tissue-specific cDC phenotypes conserved between adults and fetuses 
(Extended Data Fig. 5c). For example, both fetal and adult lung cDC2 
expressed elevated levels of CD2 and Fcε R1, while expression of these 
markers by fetal and adult gut cDC were low to negative. Notably, the 
fetal lung cDC2 population exhibited heterogeneous expression of the 
transcription factor interferon-regulatory factor (IRF)-4 (Extended 
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Figure 1 | Identification of fetal APC. a, CD14+, cDC1, and cDC2 
cells were identified within fetal spleen and skin by flow cytometry. 
b, Enumeration of APC subsets within fetal and adult tissues. Mann–
Whitney test * P <  0.05, * * P <  0.01, * * * P <  0.001. Mean ±  s.e.m.  
c, Connectivity map (CMAP) enrichment scores for fetal skin and spleen 

cDC1, cDC2, and CD14+ cells against all adult blood, skin, and spleen 
APC subsets are shown. Enrichment scores for fetal skin and spleen cDC1, 
cDC2, and CD14+ cells with equivalent adult APC subsets were significant 
at P <  0.0001. a, b, Each data point in the scatter plots represents an 
individual experiment.
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Figure 2 | Fetal cDC migrate to draining lymph nodes. a, Characteri-
zation of cDC1 and cDC2 across fetal tissues using CyTOF and One-
SENSE algorithm (see Methods, representative plots of n =  5). b, c, Flow 
cytometry analysis of fetal MLN at 16 weeks (b) or 14 weeks (c) EGA. 
Within the HLA-DR+Lin− gate (black), HLA-DRintCD11chi resident 

dendritic cells (pink) were distinguished from HLA-DRhiCD11int 
migratory dendritic cells (orange gate). b, Sixteen week EGA MLN (left) 
and fetal appendix and tonsil (right, n =  3). d, Enumeration of migratory 
cDC at indicated time points. Mean ±  s.e.m. Each data point in the scatter 
plots represents an individual experiment.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



0 0  M o n t h  2 0 1 7  |  V o L  0 0 0  |  n A t U R E  |  3

letter reSeArCH

Data Fig. 5d), which indicated contamination of the gated population 
with monocytes and/or monocyte-derived cells, as seen in adults12. 
Several activation markers were differentially expressed between cDC 
from different fetal tissues. In particular, fetal gut cDC displayed a more 
activated phenotype than did cDC in other fetal tissues (Fig. 2 a and 
Extended Data Fig. 5b, c), expressing higher levels of the chemokine 
receptor CCR7 and the activation markers CD80 and CD86. As CCR7 
mediates dendritic cell migration to lymph nodes in adults, where 
they initiate and shape emergent T-cell responses8,13, we then asked 
whether CCR7+ gut dendritic cells migrated to their draining lymphoid 
organs during fetal life. Using a gating strategy verified in adult tissues7, 
we identified migratory (HLA-DRhiCD11clo/int) and resident (HLA-
DRintCD11chi) dendritic cells in 16 week EGA fetal mesenteric lymph 
nodes (MLN) (Fig. 2b). In contrast, in the fetal appendix and tonsil, 
which lack connecting afferent lymphatics, we observed only resident 
dendritic cells (Fig. 2b). Within the MLN, the resident cell population 
included CD14+, cDC1 (CD26+CD1c−), and cDC2 (CD26−CD1c+) 
cells (Extended Data Fig. 6a). The migratory-phenotype fraction of 
dendritic cells within the MLN contained relatively few CD14+ cells, as 
in adults7,8, alongside both cDC1 and cDC2, with the former relatively 
more abundant (Extended Data Fig. 6a, b). Of note, fetal gut cDC1 
expressed more CCR7 than did cDC2 (Extended Data Fig. 5c). Similar 
to adult migratory dendritic cells7, fetal MLN migratory dendritic cells 
expressed higher levels of CCR7 and the activation markers CD80, 
CD83, and CD86 than did dendritic cells with the resident phenotype 
(Extended Data Fig. 6c). Looking along the timeline of the second 
trimester of gestation, we found that while 14–15 week EGA MLN 
contained abundant resident dendritic cells, migratory dendritic cells 
were scarce or absent (Fig. 2c, d), suggesting that fetal gut dendritic cells 
begin migrating to the MLN from 16 to 17 weeks EGA. The presence 
of migratory dendritic cells in the MLN is consistent with expression 
of the lymph-node-homing cytokines CCL19 and CCL21 (ref. 14) in 
the fetal gut and MLN (Extended Data Fig. 6d, e). Migratory HLA-DR+ 
cells were also visualized within the lymphatic vessels (LYVE-1+) of 
17–22 week EGA fetal skin (Extended Data Fig. 6f and ref. 8), pro-
viding confirmation that fetal cDC can migrate via lymphatic vessels  
in vivo. Furthermore, we observed fetal dendritic cells migrating out 
of skin explants over a period of 48 h (Extended Data Fig. 6g), using  
ex vivo skin assays validated in adult tissues15. In summary, our data 
suggest that fetal skin and gut dendritic cells have the capacity to 
migrate through lymphatics and to lymph nodes from 16 weeks EGA, 
where they may interact with fetal T cells that are present in lymphoid 
organs from 10 weeks EGA16. The reason for the initiation of dendritic  
cell migration to the lymph nodes around 16 weeks EGA remains 
unclear: while the human lymphatic system is in place by 8 weeks EGA, 
it may remain functionally immature for some time thereafter17.

Next, we asked whether fetal cDC were able to respond toll-like 
receptor (TLR)18 stimulation and/or to activate naive T cells in vitro. 
Sorted splenic cDC2 (most abundant cDC subset) from 17 to 22 week 
EGA fetuses and adult samples were exposed to a panel of TLR agonists: 
adult and fetal cells secreted similar amounts of the pro-inflammatory 
cytokines GM-CSF, IL-6, IL-8, and MIP-1β  (Fig. 3a and Extended Data 
Fig. 7a), in line with their similar expression of pattern recognition 
receptors (Extended Data Fig. 7b). Moreover, fetal and adult splenic 
cDC2 induced comparable proliferation of allogeneic carboxyfluores-
cein succinimidyl ester (CFSE)-labelled adult splenic T cells in a mixed 
lymphocyte reaction (Fig. 3b). Thus fetal cDC are capable of both 
sensing pathogens and stimulating T cells, which, together with their 
migratory ability, indicates that they have the potential to initiate an 
immune response to microbe-derived products around 17 weeks EGA.

While this shows that fetal cDC are capable of initiating allogeneic 
T-cell proliferation in vitro, we know that lifelong in vivo tolerance 
towards non-inherited maternal allogeneic antigens is established 
during gestation2,9,19. Thus, to understand how fetal dendritic cells 
contribute to such tolerogenic T-cell responses, we examined the  
phenotype of the T-cell populations generated from mixed lymphocyte 

reaction, where fetal or adult cDC2 were co-cultured with allogeneic 
adult spleen T cells. After co-culture for 6 days, fetal spleen cDC2 
induced the differentiation of significantly higher frequencies of 
CD4+CD25+FOXP3+CD127−CTLA4+ bona fide T regulatory cells 
(Treg)1,20,21 than did adult splenic cDC2 (Extended Data Fig. 8a–c). 
Confirming the immunosuppressive capacity of fetal cDC2-induced 
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Figure 3 | Fetal cDC are responsive to TLR stimulation and induce 
T-cell proliferation. a, Cytokines in supernatants of fetal and adult  
cDC2 stimulated for 18 h with TLR agonists: CL075 (1 μ g ml−1),  
CpG oligodeoxynucleotides (CpG) (3 μ M), polyinosinic-polycytidylic  
acid (PI:C) (25 μ g ml−1), peptidoglycan (PGN) (10 μ g ml−1), 
lipopolysaccharide (LPS) (0.1 μ g ml−1) +  CD40 ligand (CD40L)  
(1 μ g ml−1). No stim., no stimulation. Mean ±  s.e.m., n =  4.  
b, Alloactivation of adult CD4+ T cells by fetal and adult cDC2 after  
co-culture for 6 days. Proliferation was measured by CFSE dilution. Left: 
representative histograms. Right: cumulative data, n =  5. Mean ±  s.e.m. 
NS, not significant (P >  0.05), Mann–Whitney test.
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Treg cells, CD8+ T-cell proliferation was significantly impaired upon 
co-culture with fetal cDC2 as opposed to adult cDC2 (Extended Data 
Fig. 8d), and was restored when CD4+ T cells were removed (Extended 
Data Fig. 8e). In addition, allogeneic T cells cultured with fetal cDC2 
(Fig. 4a) or cDC1 (Extended Data Fig. 8f) produced significantly less 
of several pro-inflammatory cytokines and significantly more of the 
Th2-polarizing cytokine IL-4, but not IL-13, compared with allogeneic 
T cells incubated with adult cDC2. Thus, consistent with the establish-
ment of fetal tolerance to maternal antigens in vivo, fetal cDC initiate 
Treg induction and do not launch T-cell pro-inflammatory responses 
in vitro.

The observed functional differences between fetal and adult dendritic  
cells were mirrored at their gene expression level, with over 3,000 genes 
being significantly differentially expressed between fetal and adult 
APC (Extended Data Fig. 9a and Supplementary Tables 10 and 11).  

Ingenuity pathway analysis revealed that multiple pathways involved 
in educating T cells were significantly differentially regulated between 
fetal and adult APC, as were several pathways involved in the inducible  
nitric oxide synthase/tumour-necrosis factor-α  (iNOS/TNF-α )  
axis (Extended Data Fig. 9b, red and black arrows, respectively, 
Supplementary Table 12). Further analysis revealed that a number of 
genes involved in immune suppression/inflammation were differen-
tially expressed (Extended Data Fig. 9c). Of particular interest was the 
elevated expression of arginase-2 by fetal spleen cDC2 (Fig. 4b, c) and 
cDC1 (Extended Data Fig. 9d, e) in comparison with adult spleen cDC. 
Of note, arginase-2 expression was not modulated by TLR stimulation 
(Extended Data Fig. 9f). Arginase depletes the local environment of 
l-arginine (by converting l-arginine to l-ornithine and urea) which is  
required for the production of TNF-α 22,23. Importantly, arginase activity  
has been shown to be an essential player in the regulation of TNF-α  
levels in the neonate22.

Coincidingly, we found that in stimulated splenic culture (that is, 
include APC), fetal T cells did not produce TNF-α  compared with adult 
T cells (Fig. 4d and Extended Data Fig. 10a). However, when enriched 
(that is, in the absence of APC), they produced TNF-α , although to a 
lesser level to their adult counterparts (Fig. 4d). Furthermore, we found 
significantly lower frequencies of fetal T cells producing TNF-α  than 
adult T cells after 6 days of culture (Extended Data Fig. 10b). In addition,  
when fetal and adult splenocytes were co-cultured at increasing ratios 
of fetal cells, adult T-cell TNF-α  production was impaired. While 
fetal splenocytes also promoted Treg induction, the change in TNF-α   
levels did not correlate with the change observed in Treg induction 
(Extended Data Fig. 10b–d). These data suggested that the differential 
arginase-2 expression between adult and fetal cDC is sufficient to regulate  
T-cell responses and their TNF-α  production.

In the absence of any cDC, approximately 24% of proliferating adult 
splenic T cells produced TNF-α , while after co-culture for 6 days with 
fetal cDC2 (Fig. 4e, f) or cDC1 (Extended Data Fig. 9g) expressing 
arginase-2, their ability to produce TNF-α  was dramatically reduced. 
TNF-α  production was reinstated upon replenishing the medium with 
l-arginine or by the addition of arginase-specific inhibitors22 (Fig. 4e, f),  
confirming that the reduced TNF-α  production was mediated through 
cDC arginase-2 activity. Treg numbers did not change when arginase 
activity was modulated, suggesting that fetal dendritic cell regulation 
of TNF-α  production is independent of their promotion of Treg induc-
tion (Extended Data Fig. 10e–h). Further analysis of the supernatants 
from the co-cultures found that fetal cDC did not downregulate T-cell 
production of other pro-inflammatory cytokines by arginase-2 activity 
(Extended Data Fig. 10i–k), suggesting fetal dendritic cells utilize a 
range of mechanisms to regulate T-cell biology, which remain to be 
explored. We also found that when fetal cDC were cultured with adult 
cDC2, they could abrogate adult cDC2 promotion of TNF-α  produc-
tion by T cells (Extended Data Fig. 10l, m). In addition, when fetal  
T cells were cultured in the absence of cDC, they produced TNF-α , but 
when co-cultured with fetal cDC their ability to produce TNF-α  was 
significantly impaired (Fig. 4g). Altogether, these data confirm that, in 
the absence of TLR stimulation, fetal dendritic cells promote immune 
suppression and impair T-cell TNF-α  production in response to allo-
geneic antigens through expression of arginase-2. Importantly, a recent 
study highlighted the crucial role of l-arginine as major modulator of 
adult T-cell biology24.

In summary, our findings have uncovered a previously unknown 
mechanism of tolerance and immune suppression that is used during 
gestation by fetal cDC and works in concert with other mechanisms 
used by fetal natural killer cells25 and Treg cells1. Understanding the 
mechanisms through which TNF-α  production is regulated within the 
fetus is important, as elevated levels of TNF-α  are associated with a 
number of pregnancy and perinatal complications including recurrent  
spontaneous miscarriage, gestational diabetes, and necrotizing enter-
ocolitis. Our data suggest that the regulation of l-arginine levels by 
fetal dendritic cells is important for controlling T-cell TNF-α  levels 
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Figure 4 | Arginase-2+ fetal cDC regulate TNF-α production.  
a, Cytokine production by adult T cells after co-culture for 6 days with 
fetal or adult cDC2 (n =  5). b, c, Expression of arginase-2 gene (b) and 
protein (c) in cDC2. d, Splenocyte T-cell TNF-α  production. e, f, TNF-α  
production (red) of stimulated adult T cells, after overnight culture in the 
absence (day 0) or presence of cDC2 (day 6 of co-culture), with or without 
additional supplementation of l-arginine or arginase inhibitors (ABH or 
BEC). e, Representative dot plots. f, Cumulative data. g, TNF-α  production 
from stimulated fetal T cells under indicated culture conditions. 
Mean ±  s.e.m. * P <  0.05, * * P <  0.01, * * * P <  0.001, Mann–Whitney test. 
Each data point in the scatter plots represents an individual experiment.
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during gestation, placing fetal dendritic cells as key regulators of TNF-α   
production that should be investigated as potential therapeutic  
targets in such situations. In addition, our study demonstrates that 
fetal cDC are immunologically dynamic and can orchestrate immune 
responses as early as the second trimester. How TLR stimulation during  
intrauterine infections can override immune suppression induced 
by arginase-2-expressing fetal dendritic cells in an allogeneic context 
remains to be explored. Altogether, these findings highlight that key 
processes in human immune development and programming in fact 
begin early during gestation and may have lifelong implications for 
immune homeostasis19.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethOdS
Human samples and consent. The donation of fetal tissue for research was 
approved by the Centralised Institutional Research Board of the Singapore Health 
Services in Singapore. This approval strictly followed established international 
guidelines about the use of fetal tissue for research26. This approval allowed the  
collection of different fetal tissues from women undergoing clinically indicated 
termination of pregnancies for the study of immune cells. Women gave written 
informed consent for the donation of fetal tissue to research nurses who were not 
directly involved in the research, or in the clinical treatments of women participating  
in the study, as per the Polkinghorne guidelines26. This protocol was reviewed on 
an annual basis by the Centralised Institutional Research Board, including annual 
monitoring of any adverse events, for which there had been none. All fetal organs 
for this study (lung, thymus, spleen, MLNs, gut, appendix, liver, tonsil, and skin) 
were obtained during the second trimester (12–22 weeks EGA). All fetuses were 
considered structurally normal on ultrasound examination before termination 
and by gross morphological examination after termination. In total 72 fetuses of 
12–16 weeks EGA and 24 fetuses of 17–22 weeks EGA were used for this study. 
For comparisons across fetal organs the same donors were used, for example for 
CyTOF data analysis.

Adult tissues (lung, spleen, gut, and skin) were obtained with approval 
from Singapore Singhealth and National Health Care Group Research Ethics 
Committees.
Cell isolation. Fetal organs were mechanically dispersed and incubated with 
0.2 mg ml−1 collagenase (type IV; Sigma-Aldrich) and DNase I (20,000 U ml−1; 
Roche) in Roswell Park Memorial Institute medium (RPMI) with 10% FCS for 
up to 1 h in a six-well plate. Viability was typically 80–90% measured by DAPI 
exclusion (Partec). Fetal gut was initially cut longitudinally through the centre, 
washed extensively in PBS until all inner content (meconium) was removed and the 
PBS was clear, before mechanical dispersion and digestion as above, for up to 1 h. 
Adult lung specimens (eight samples from different donors) were obtained from 
peri-tumoural tissue. Adult skin (20 samples from different donors) was obtained 
from mammoplasty and breast reconstruction surgery. Adult spleen specimens 
(eight samples from different donors) were obtained at distal pancreatectomies in 
patients with pancreatic tumours in the pancreas. Adult lung27 and skin8 specimens 
were prepared as described previously. Adult spleen specimens were prepared in 
a similar manner to lung. Tissue macrophages and dendritic cells were isolated  
to 95% purity from freshly digested tissue cell suspensions by fluorescence- 
activated cell sorting (FACS) using BD FACSAriaII or III (BD Biosciences).  
T cells were isolated to 90% purity from adult and fetal spleen by negative selection 
using T-cell enrichment kits (Miltenyi Biotec) and separated on an AutoMacs by 
following the manufacturer’s instructions. T cells were labelled with 0.2 μ M CFSE 
(Life Technologies) for 5 min at 37 °C. In all experiments, enriched APC and T cells 
were from fetal and adult spleen unless stated otherwise.
Flow cytometry. Flow cytometry was performed on a BDLSRII and data ana-
lysed with FlowJo (Treestar). Antibodies used are listed in Supplementary Table 
12. An eBioscience FOXP3/Transcription Factor Staining Buffer Set (eBioscience/
Affimetrix) was used for intracellular staining of IRF-8, IRF-4, CTLA4, arginase-2, 
TNF-α , and FOXP3 cells by following the manufacturer’s instructions.
Mixed lymphocyte reactions. Five thousand sorted cDC from defined subpopula-
tions were co-cultured with 100,000 CFSE-labelled adult or fetal spleen T cells for  
6 days in 200 μ l complete RPMI-1640 Glutamax medium (Life Technologies)  
supplemented with 10% FBS and 1% penicillin/streptomycin27. On day 6, cells super-
natants (100 μ l) were removed and stored at − 80 °C for detection of the cytokines 
indicated in Fig. 4a and Extended Data Figs 8f and 10i–k) at a later date. Cytokines 
were detected using Luminex bead-based multiplex assays, as detailed below. 
For analysis of intracellular TNF-α  production analysis, on day 6 of co-cultures  
T cells were re-stimulated with 10 μ g ml−1 phorbol myristate acetate (PMA) and  
500 μ g ml−1 ionomycin for 1 h at 37 °C. Brefeldin A solution (10 μ g ml−1) was added 
for 4 h. Intracellular cytokine production was determined by flow cytometry. In 
some experiments on day 0, the arginase inhibitors S-(2-boronoethyl)-l-cysteine 
(BEC) or amino-2-borono-6-hexanoic acid (ABH) (each used at 30 μ M respec-
tively) were added to co-cultures. In some experiments on day 6, 1 mM l-arginine 
was added to co-cultures 1 h before stimulation with PMA/ionomycin.
Ex vivo co-culture assays. Fetal or adult splenocytes (1 ×  105) were seeded into 
96-well round-bottom plates alone or combined at defined ratios in 200 μ l medium. 
After co-culture overnight or for 6 days, the splenocytes were stimulated with  
10 μ g ml−1 PMA (InvivoGen) and 500 μ g ml−1 ionomycin (Sigma) for 1 h at 37 °C. 
Brefeldin A solution (10 μ g ml−1) was added for 4 h. Intracellular T-cell TNF-α  
production was determined by flow cytometry as described above.
Millipore Luminex bead-based multiplex assays on supernatants from mixed 
lymphocyte reactions. Samples (supernatants) or standards were incubated with 
fluorescent-coded magnetic beads pre-coated with cytokine-specific capture  

antibodies. After an overnight incubation at 4 °C with shaking, plates were washed 
twice with wash buffer. Biotinylated detection antibodies specific to the cytokine of 
interest were incubated with the complex for 1 h and subsequently Streptavidin-PE 
was added and the complex incubated for another 30 min. Plates were washed 
twice again, and beads were re-suspended with sheath fluid before a minimum of  
50 beads per cytokine were analysed on a Luminex FLEXMAP 3D (Merck 
Millipore). Data acquisition used xPONENT 4.0 (Luminex) acquisition software, 
with data analysed in Bio-Plex Manager 6.1.1 (Bio-Rad). Cytokine concentrations 
were calculated from the standard curve using a 5PL (5-parameter logistic) curve fit.
Drop array Luminex assays on fetal and adult spleen cDC2. Sorted fetal  
(17–22 weeks EGA) and adult spleen cDC2 were incubated for 18 h at 20,000 cells 
per well in 100 μ l complete RPMI-1640 Glutamax medium (Life Technologies) 
supplemented with 10% FBS and 1% penicillin/streptomycin, and stimulated 
either with TLR agonists (CL075 (1 μ g ml−1), CpG (3 μ M), PI:C (25 μ g ml−1), PGN  
(10 μ g ml−1), LPS (0.1 μ g ml−1) +  CD40L (1 μ g ml−1)) or with DMSO control. Cells 
were then pelleted and 95 μ l of supernatants were collected. Fetal and adult spleen 
cDC2 cytokine production was assessed using Luminex bead-based multiplex  
assays. Cytokines indicated in the figures were detected with DropArray-bead 
plates (Curiox) according to the manufacturer’s recommendations. Acquisition was 
performed with xPONENT 4.0 (Luminex) acquisition software, and data analysis 
with Bio-Plex Manager 6.1.1 (Bio-Rad).
Mass cytometry staining, barcoding, acquisition, and data pre-processing. 
For mass cytometry analysis, purified antibodies were obtained from Invitrogen, 
Fluidigm, Biolegend, eBioscience, Beckton Dickinson, and R&D Systems using 
clones as listed in Supplementary Table 13. For some markers, fluorophore- or  
biotin-conjugated antibodies were used as primary antibodies, followed by secondary  
labelling with anti-fluorophore metal-conjugated antibodies (that is, anti-FITC 
clone FIT-22) or metal-conjugated streptavidin produced as previously described11. 
Briefly, cells were plated, stained, and labelled in a V-bottom 96-well plate (BD 
Falcon). Cells were washed once with 200 μ l FACS buffer (4% FBS, 2 mM EDTA, 
0.05% Azide in 1×  PBS), followed by staining with 100 μ l of 200 μ M cisplatin 
(Sigma-Aldrich) for 5 min on ice to exclude dead cells. Cells were then labelled 
with anti-CADM1-biotin and antibodies in a 50 μ l reaction volume for 30 min 
on ice. Cells were washed twice with FACS buffer and labelled with 50 μ l heavy-
metal isotope-conjugated secondary antibody cocktail for 30 min on ice. Cells were 
washed twice with FACS buffer then once with PBS before fixation with 200 μ l  
2% PFA (Electron Microscopy Sciences) in PBS overnight or longer. After fixation, 
cells were pelleted and re-suspended in 200 μ l 1×  perm buffer (Biolegend) and 
allowed to stand for 5 min at room temperature. Cells were washed once with PBS 
before barcoding. Bromoacetamidobenzyl-EDTA (BABE)-linked metal barcodes 
were prepared by dissolving BABE (Dojindo) in 100 mM HEPES buffer (Gibco) 
to a final concentration of 2 mM. Isotopically purified PdCl2 (Trace Sciences) was 
then added to BABE solution to 0.5 mM. Similarly, DOTA-maleimide-linked 
metal barcodes were prepared by dissolving DOTA-maleimide (Macrocyclics) 
in L buffer (MAXPAR) to a final concentration of 1 mM. Then, 50 mM of RhCl3 
(Sigma) and isotopically purified LnCl3 were added to DOTA-maleimide solution 
to 0.5 mM. Six metal barcodes were used: BABE–Pd-102, BABE–Pd-104, BABE–
Pd-106, BABE–Pd-108, BABE–Pd-110, and DOTA-maleimide–Ln-113. All BABE 
and DOTA-maleimide–metal solution mixtures were immediately snap-frozen in 
liquid nitrogen and stored at − 80 °C. A unique dual combination of barcodes was 
chosen to stain each tissue sample. Barcode Pd-102 was used at 1:4,000 dilution,  
Pd-104 at 1:2,000, Pd-106 and Pd-108 at 1:1,000, and Pd-110 and Ln-113 at 1:500. 
Cells were incubated with 100 μ l of barcodes in PBS for 30 min on ice. They were 
then washed in perm buffer and incubated in FACS buffer for 10 min on ice. 
Cells were then pelleted and re-suspended in 100 μ l of nucleic acid Ir-Intercalator 
(MAXPAR) in 2% PFA/PBS (1:2,000), at room temperature. After 20 min, cells 
were washed twice with FACS buffer and twice with water before a final resus-
pension in water. In each set, cells were pooled from all tissue types, enumerated, 
and diluted to a final concentration of 0.5 ×  106 cells per millilitre for acquisition. 
EQ Four Element Calibration Beads (DVS Science, Fluidigm) were added at a 
concentration of 1% before acquisition. Cells were acquired and analysed using a 
CyTOF Mass cytometer. The data were exported in traditional flow-cytometry-file 
(.fcs) format and cells for each barcode were deconvolved using Boolean gating.
One-SENSE analysis. The automated analysis used the One-SENSE algorithm as 
described previously11. For Fig. 2 and Extended Data Figs 4b and 5b, the lineage 
dimension included CD1c and SIRPα  as cDC2 markers, and CD26 and CLEC9A as 
cDC1 markers. The marker dimension included all the other non-lineage markers 
of the CyTOF panel. Frequency heatmaps of indicated markers are displayed for 
both dimensions. cDC2 clusters (cyan gate) and cDC1 clusters (green gate) for 
each organ and their marker expression profile are highlighted by the extended 
gates (representative plots of n =  5). For comparisons across fetal organs, organs 
from the same donor were used.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Microarray analysis. Total RNA was isolated from FACS-purified fetal spleen 
and skin (17–22 weeks EGA) CD14+, cDC1, and cDC2 cell subsets, and adult 
spleen CD14+, cDC1, and cDC2 cell subsets, with a Qiagen RNeasy Micro kit 
(Qiagen). Total RNA integrity was assessed using Agilent Bioanalyzer and the 
RNA integrity number was calculated; all RNA samples had an RNA integrity 
number ≥ 7.1. Biotinylated complementary RNA was prepared according to the 
protocol by Epicentre TargetAmp 2-Round Biotin-aRNA Amplification Kit 3.0 
using 500 pg of total RNA. Hybridization of complementary RNA was performed 
on Illumina Human-HT12 Version 4 chips. Microarray data were exported from 
GenomeStudio software without background subtraction. Expression values were 
quantile normalized and log2-transformed in R (version 3.1.2) with Bioconductor 
(version 2.26.0) lumi package (version 2.18.0). To generate fetal APC subset gene 
signatures, one cell subset was compared with other cell subsets pooled using t-test 
in R. Differentially expressed genes were selected with a Benjamini–Hochberg mul-
tiple testing28 corrected P value of < 0.05. For the adult APC gene expression data, 
samples were grouped by tissue type, and tissue-specific probes were identified 
with one-way analysis of variance (ANOVA) and a Benjamini–Hochberg multiple  
testing corrected P value of < 0.05. Connectivity map analysis as previously 
described11 was performed comparing fetal dendritic cell signature gene subsets 
with the adult APC gene expression data after removal of the tissue-specific probes 
(see Extended Data Fig. 3 for hierarchical clustering and PCA plots before and 
after removal of tissue-specific probes). To identify the genes that were highly or 
lowly expressed in a particular cell subset, we used the single-class rank product 
method29, implemented in the Bioconductor RankProd package (version 2.38.0), 
and selected the top- and bottom-ranked genes with a percentage of false-positives 
less than 0.01. The in-house-generated adult and fetal microarray data have been 
deposited in the Gene Expression Omnibus under accession numbers GSE35457, 
GSE85305, and GSE85304.
Quantitative PCR. Total RNA was isolated from adult or fetal gut and MLN  
(14–20 weeks EGA) cells with a Qiagen RNeasy Micro kit (Qiagen). Total RNA integrity  
and concentration was assessed using nanodrop 2000 (Thermoscientific). Total  

RNA (1 μ g) was reverse transcribed using oligo (dT)18 primer and SuperScript II  
reverse transcriptase (GIBCO-BRL). CCL19 and CCL21 expression was analysed  
by quantitative PCR using the following primers: + 5-CCAGCCTCACATCACTCA 
CACCTTGC-3 and − 5-TGTGGTGAACACTACAGCAGGCACCC-3 for CCL19;  
+ 5-AACCAAGCTTAGGCTGCTCCATCCCA-3 and − 5-TATGGCCCTTTAGG 
GGTCTGTGACCG-3 for CCL21. CCL19 and CCL21 expression was normalized to 
the housekeeping gene GAPDH + 5-GCCAAGGTCATCCATGACAACTTTGG-3 
and − 5-GCCTGCTTCACCACCTTCTTGATGTC-3.
Confocal microscopy. Samples were prepared for confocal microscopy as 
described previously15.
Statistical analysis. Statistical analysis used for each experiment is indicated in 
the figure legends. Each n number represents an individual donor and a separate 
experiment, apart from CyTOF experiments as indicated in the Extended Data 
figure legends. No statistical methods were used to predetermine sample size. The 
experiments were not randomized. The investigators were not blinded to allocation 
during experiments and outcome assessment.
Data availability. Source data for number(s) are provided with the paper. 
Sequence data that support the findings of this study have been deposited in the 
Gene Expression Omnibus under accession numbers GSE35457, GSE85305, and 
GSE85304. Further data that support the findings of this study are available from 
the corresponding authors upon reasonable request.
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Extended Data Figure 1 | Identification of APC subsets in fetal  
and adult tissues. Representative flow plots of gating strategy used to  
identity APC subsets in fetal and adult tissues. a, Gating strategy used to  
identify APC populations within the live CD45+, HLA-DR+Lin− gate;  
CD14+ (red gate), pDC (pink gate), cDC1 (blue gate), and cDC2 (green  
gate) cells in fetal lung, spleen, skin, and thymus. b, Gating strategy  
used to identify CD14+ (red gate), pDC (pink gate), cDC1 (blue gate),  
and cDC2 (green gate) cells in adult lung and spleen. c, Abundance of  
APC plotted as a percentage of live CD45+ mononuclear cells. Cell  
abundance was determined in fetal lung and thymus at two time points  

within the second trimester (12–15 weeks EGA) (circle, lung n =  13,  
thymus =  9) and 16–22 weeks EGA (square, lung n =  8, thymus n =  8)  
and compared with adult tissues (triangle, lung n =  8). Mean ±  s.e.m.  
* P <  0.05, * * * P <  0.001, Mann–Whitney test. d, Pseudo-colour images 
of whole-mount fetal spleen (17 weeks EGA) immunolabelled for CD45 
(red), CD1c (blue), and CLEC9A (green). White arrows highlight 
cDC2 (CD45+CD1c+CLEC9A−), white arrowhead highlights cDC1 
(CD45+CD1c+CLEC9A+). Scale bar, 5 μ m. Representative image of n =  3 
experiments shown.
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APC subset purity. Representative dot plots demonstrating cell purity 
after using FACS to isolate indicated APC subsets from fetal skin and 
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Extended Data Figure 3 | Fetal APC populations cluster based on subset 
after the removal of tissue-specific probes. a–d, Hierarchical clustering 
and PCA data before (a, c) and after (b, d) removal of tissue-specific 
probes. It is clear from the hierarchical clustering (a) that there is strong 
tissue imprinting in the cells that overwhelms subtype specificity. Upon the 
removal of tissue-specific probes, cells now cluster based on subtype (b).  

Also clearly from the PCA plots (c, d), we can see that before tissue gene 
removal (c), PC1 is entirely determined by tissue. However, upon tissue-
specific probe removal (d), PC1 is now devoted to cell type. We identified 
these tissue-specific genes by finding differentially expressed genes 
between the pools of all cells from the different tissues (all spleen versus 
all skin).
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Extended Data Figure 4 | Fetal and adult spleen cDC have similar 
phenotypes. a, b, Characterization of cDC1 (green gate) and cDC2 
(cyan gate) across adult and fetal spleen using CyTOF and One-SENSE 
algorithm11. a, Representative gating strategy used to select input 
population (red gate) for One-SENSE analysis from fetal (17 weeks EGA) 
and adult spleen samples. b, Representative data of fetal and adult spleen 
cDC analysed using the One-SENSE algorithm. The lineage dimension 

included CD1c and SIRPα  as cDC2 markers, and CD26 and CLEC9A as 
cDC1 markers. The marker dimension included all the other non-lineage 
markers of the CyTOF panel. Frequency heatmaps of markers expression 
are displayed for both dimensions. The expression of markers by both 
adult and fetal spleen cDC1 (green) and cDC2 (cyan) is highlighted with 
the dashed gates. Representative data from n =  5 donors over two separate 
experiments.
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Extended Data Figure 5 | Phenotypic characterization of fetal spleen, 
thymus, lung, and gut cDC. a, Representative gating strategy used to 
select input population (red gate) for One-SENSE analysis from fetal 
spleen, thymus, lung, and gut (17 weeks EGA). b, Characterization of 
cDC1 (green gate) and cDC2 (cyan gate) across fetal lung, spleen, thymus, 
and gut using CyTOF and One-SENSE algorithm11. The lineage dimension 
included CD1c and SIRPα  as cDC2 markers, and CD26 and CLEC9A 
as cDC1 markers. The marker dimension included all the other non-
lineage markers of the CyTOF panel. Frequency heatmaps of markers 
expression are displayed for both dimensions. The expression of markers 
by fetal cDC1 (green) and cDC2 (cyan) subsets are highlighted with the 

dashed gates. Representative data from n =  5 donors over two separate 
experiments. c, Histograms displaying surface markers differentially 
expressed across fetal organs (17 weeks EGA) but conserved from fetus 
to adult. The histograms are generated from CyTOF data (generated as 
described above). Data are representative of n =  5 donors over two separate 
experiments. d, Fetal cDC1 (green gate) and cDC2 (blue gate) populations 
were identified within each organ on the basis of their CD26 and CD1c 
expression (top panels) by flow cytometry analysis. Using the gates in the 
top panels to select fetal cDC1 (green contours) and cDC2 (blue contours), 
intracellular expression of IRF-8 and IRF-4 was determined by flow 
cytometry. Representative data; n =  3 donors in three experiments.
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Extended Data Figure 7 | Fetal cDC are sensitive to low concentrations 
of TLR agonist stimuli. a, Sort-purified fetal liver and adult spleen 
cDC2 were cultured with the indicated TLR agonists for 18 h. Cytokines 
produced were measured in the supernatants by Luminex assay (n =  3). 

Mean ±  s.e.m. b, Heatmap of fetal and adult spleen APC populations of 
selected genes, including pathogen recognition receptors and co-stimulatory  
molecules. Heatmap shows the row-based, z-score-normalized gene 
expression intensities.
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Extended Data Figure 8 | Fetal cDC promote Treg induction. a–c, Flow 
cytometry expression analysis of Treg cells after co-culture for 6 days  
of adult spleen T cells with fetal (n =  5) or adult (n =  4) spleen cDC2.  
a, b, Frequency of FOXP3+CD25+ Treg cells (a, red gate) and representative 
histograms of the intensity of CD127 and CTLA-4 expression by Treg cells 
(red histograms) and respective isotype controls (grey histograms) are 
shown (b). c, Composite results showing the frequency of Treg cells plotted 
as percentage of CD4+ T cells (n ≥  4). Mean ±  s.e.m. d, Bar graph of 
proliferating CD8+ T cells after 6 days of adult spleen pan T-cell co-culture 
with fetal (black, n =  4) or adult (grey, n =  4) spleen cDC2. Proliferation 
was measured by CFSE dilution. Mean ±  s.e.m. e, Proliferation of isolated 

adult spleen CD8+ T cells, after co-culture with fetal spleen cDC2 for  
6 days. Left, representative histograms showing CFSE dilution by CD8+  
T cells on day 0 (grey histogram) compared with day 6 with (red histogram)  
or without (black histogram) CD4+ T-cell depletion. Right, cumulative 
data (n =  4). Mean ±  s.e.m. * P <  0.05, * * P <  0.01, Mann–Whitney test. 
f, Fetal spleen cDC1 and cDC2 share immune-suppressive properties. 
Cytokine detected in co-culture supernatants after T-cell co-culture 
with fetal cDC1 or cDC2 or adult cDC2 (n =  5). Mean ±  s.e.m. Statistical 
significance represents comparisons between indicated conditions 
measured by one-way ANOVA, multiple comparisons test. * P <  0.05;  
* * P <  0.01; * * * P <  0.001; NS, P >  0.05.
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Extended Data Figure 9 | See next page for caption.
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Extended Data Figure 9 | Gene expression comparison between fetal 
and adult APC. a, Heatmap showing the row-based, z-score-normalized 
gene expression intensities of 3,909 differentially expressed genes between 
fetal and adult APC. Differentially expressed genes were identified using 
a t-test with a Benjamini–Hochberg multiple testing corrected P value of 
< 0.05. The genes and cell populations were clustered using the Pearson 
correlation distance measure and complete linkage method. b, Ingenuity 
pathway analysis of the differentially expressed genes, > 1.5-fold change, 
between fetal and adult APC. Bars indicate the P values (− log10) for 
pathway enrichment. Orange squares indicate the ratio of the number 
of up- or downregulated genes mapped to the enriched pathway, to the 
total number of molecules on that pathway represented by the dashed 
orange line. The vertical solid orange line corresponds to the > 1.5-fold 
change threshold. Red arrows highlight pathways involved in DC:T-cell 
interactions, black arrows highlight pathways associated with iNOS/TNF-α   

signalling. c, Heatmap of immune-modulatory genes involved in cellular 
metabolism, immune suppression, and the iNOS/TNF-α  signalling. 
Heatmap shows the row-based, z-score-normalized gene expression 
intensities. d, e, Microarray (d) and flow cytometry (e) data demonstrating 
arginase-2 (Arg2) expression by fetal (blue, n =  11) and adult (red, n =  7) 
APC subsets. Isotype control, grey histogram and square on scatterplot 
(n =  7). Mean ±  s.e.m. f, Fetal and adult cDC2 arginase-2 expression 
is not mediated by TLR stimulation. Fetal liver and adult spleen cDC2 
were sort-purified and stimulated with the indicated TLR agonists or 
dimethylsulfoxide (DMSO) control for 18 h. cDC2 arginase-2 expression 
was measured by flow cytometry. Mean ±  s.e.m. One-way ANOVA, 
multiple comparisons test. * * P <  0.01. g, TNF-α  (n =  4) and Treg (n =  4 
and 6) induction after adult spleen T-cell overnight culture alone or with 
fetal cDC1 or cDC2 for 6 days. Mean ±  s.e.m.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



letterreSeArCH

37%

Stim 0.25:1

Adult:fetal

13.7%

1:1No Stim

0.1%

0.1:1

8.1%18.7%

Stim

7.5%

Adult Fetal

Day 6 Co-culture

TN
F-

α

CD69

FO
X

P
3

CD25

22%4% 5% 21% 18%18%

a

b

%
 T

N
F-

α

0

20

40

60

No stim Stim Stim

Adult:Fetal

1:1 0.25:1 0.1:1

Adult Fetal

**

*

***

*

*ns

%
 T

re
g

0

20

40

60

**

*

ns
ns

**

No stim Stim Stim

Adult:Fetal

1:1 0.25:1 0.1:1

Adult Fetal

ns
ns

*

0

20

40

60

%
 T

N
F-

α

Stimuli

+

L-Arg
(1mM)

Fetal DC +

ABH
(30µM)

BEC
(30µM)

+ +

Day 6

***
*

***

Day 0

*

0

20

40

60

Stimuli

+

L-Arg
(1mM)

Fetal DC +

ABH
(30µM)

BEC
(30µM)

+ +

Day 6

%
 T

re
g ***

ns
ns

ns

Day 0

0

1000

2000

3000

4000

# 
TN

F-
α

***

***

*
*

Stimuli

+

L-Arg
(1mM)

Fetal DC +

ABH
(30µM)

BEC
(30µM)

+ +

Day 6Day 0

0

1000

2000

3000

4000

# 
Tr

eg

***

ns
ns

Stimuli

+

L-Arg
(1mM)

Fetal DC +

ABH
(30µM)

BEC
(30µM)

+ +

Day 6Day 0

ns

d

e f

g h

i

0

50

100

150

200

0

50

100

150

200

IL-2

pg
 m

l-1

L-
A

rg
B

ec
A

B
H

0.0

0.2

0.4

0.6

0.8

L-
A

rg
B

ec
A

B
H

ng
 m

l-1

IL-4

0.0

0.5

1.0

1.5

2.0

L-
A

rg
B

ec
A

B
H

ng
 m

l-1

GM-CSF

0

20

40

60

80

IFN-γ

L-
A

rg
B

ec
A

B
H

pg
 m

l-1

0
10
20
30
40
50

0

200

400

600

0

10

20

30

IL-10

pg
 m

l-1

L-
A

rg
B

ec
A

B
H

j
No Stim

CD69

TN
F-

α

41%

L-Arg
1mM
44%

BEC
30µM
44%

ABH
30µM

42%

k

0

1

2

3

4

N
o 

S
tim

L-
A

rg
B

ec
A

B
H

GM-CSF

0.0

0.2

0.4

0.6

0.8

pg
 m

l-1

N
o 

S
tim

L-
A

rg
B

ec
A

B
H

IL-4

0
5

10
15
20
25

%
 T

N
F-

α

Adult:Fetal

1:1 0.25:1 0.1:1Adult DC
Fetal DC

*
**

**
*

+
+

0
5

10
15
20
25

%
 T

re
g

Adult:Fetal

1:1 0.25:1 0.1:1

*

Adult DC
Fetal DC

+
+

pg
 m

l-1

pg
 m

l-1

0

2000

4000

6000

8000

N
o 

S
tim

L-
A

rg
B

ec
A

B
H

IFN-γ

0
200
400
600
800

1000

N
o 

S
tim

L-
A

rg
B

ec
A

B
H

TNF-α

pg
 m

l-1

0

1

2

3

4
IL-1β

pg
 m

l-1

N
o 

S
tim

L-
A

rg
B

ec
A

B
H 0

10
20
30
40
50

IL-17a

pg
 m

l-1

N
o 

S
tim

L-
A

rg
B

ec
A

B
H 0

10

20

30

pg
 m

l-1

IL-10

N
o 

S
tim

L-
A

rg
B

ec
A

B
H 0

1000

2000

3000

4000
IL-13

pg
 m

l-1

N
o 

S
tim

L-
A

rg
B

ec
A

B
H

l m

Fe
ta

l T
 c

el
ls

A
du

lt 
T 

ce
lls

Stim
1.7%

17%

0.3%

1.3%

No Stim

Bulk tissue cells Enriched T cells

16%0.03%

0.03% 25%

TN
F-

α

CD69

Day0 Day0

StimNo Stim

c

0

1

2

3

4

***

IL-1β

pg
 m

l-1

L-
A

rg
B

ec
A

B
H

TNF-α

*
*

L-
A

rg
B

ec
A

B
H

ns

L-
A

rg
B

ec
A

B
H

IL-17a

pg
 m

l-1

IL-13

L-
A

rg
B

ec
A

B
H

pg
 m

l-1

pg
 m

l-1

Extended Data Figure 10 | See next page for caption.
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Extended Data Figure 10 | Fetal cDC regulate T-cell TNF-α production. 
a, Ex vivo splenocyte T-cell (bulk tissue cells) and enriched spleen T-cell 
TNF-α  production, representative plots of n =  4. b, Ex vivo co-culture 
assay where fetal and adult splenocytes were cultured alone or at the 
indicated ratios of adult:fetal cells (n =  3–4) for 6 days. TNF-α + and  
Treg cell induction was determined by flow cytometry analysis.  
c, d, Scatterplots demonstrating the percentage of TNF-α + T cells and Treg 
after the culture of splenocytes under the indicated conditions for  
6 days (n ≥  3). Mean ±  s.e.m. Statistical significance represents comparisons  
between indicated conditions measured by one-way ANOVA, multiple 
comparisons test. * P <  0.05; * * P <  0.01; * * * P <  0.001; NS, P >  0.05.  
e–h, Scatterplots demonstrating the percentage (e, f) and absolute cell 
counts (g, h) of TNF-α + T cells and Treg after overnight culture of adult 
spleen T cells alone (n =  6) or co-culture for 6 days with fetal cDC2 in the 
absence (n =  6) or presence (n =  6) of l-arginine, ABH (n =  4), or BEC 
(n =  5). Mean ±  s.e.m. Statistical significance represents comparisons 
between indicated conditions measured by one-way ANOVA, multiple 
comparisons test. * P <  0.05; * * * P <  0.001; NS, P >  0.05. i, Fetal dendritic 
cell arginase activity impacts T-cell TNF-α  production but not other  

pro-inflammatory cytokines. Cytokines detected in co-culture 
supernatants after adult spleen T-cell co-culture with fetal cDC2 in the 
absence (n =  5) or presence of l-arginine (1 mM) (n =  5), BEC (30 μ M)  
(n =  3), ABH (30 μ M) (n =  5) for 6 days. Mean ±  s.e.m. Statistical 
significance represents comparisons between indicated conditions 
measured by one-way ANOVA, multiple comparisons test. * P <  0.05;  
* * P <  0.01; NS, P >  0.05. j, Adult spleen T cells were cultured overnight 
with the indicated of l-arginine, BEC, and ABH (n =  5). Representative 
flow cytometry plots. k, Cytokines detected in supernatants after adult 
spleen T cells were cultured alone (in the absence of dendritic cells) for  
6 days with or without l-arginine (1 mM), BEC (30 μ M), and ABH  
(30 μ M) (n =  5). Mean ±  s.e.m. l, m, Fetal spleen cDC (pooled cDC1 and 
cDC2) and adult spleen cDC2 were cultured alone or in combination at 
the indicated ratios with adult spleen T cells for 6 days. T-cell TNF-α   
production (l) and the expansion of Treg cells (m) were assessed by flow 
cytometry. Statistical significance represents comparisons between 
indicated conditions measured by one-way ANOVA, multiple comparisons 
test. * P <  0.05; NS, P >  0.05. Each data point in all the scatter plots 
represents an individual donor and experiment. Mean ±  s.e.m.
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